
1. Introduction
The land hydroclimate integrates precipitation and temperature inputs with soil and land use/land cover (vegeta-
tion) processes, providing a societally relevant quantity, for example, drought and pluvial risks. Understanding 
how decadal climate variations impact land hydroclimate extremes remains challenging, with numerous uncer-
tainties in the climate system still to be adequately assessed (Bellucci et al., 2015; Meehl et al., 2014; Merryfield 
et al., 2020; Stouffer et al., 2017), including the relative importance of oceanic variability, internal atmospheric 
dynamics, and land-atmosphere interaction processes (Kumar et  al.,  2020; Schubert et  al.,  2016). In North 
America, El Niño-Southern Oscillation (ENSO) strongly affects land hydroclimate variability and predictability 
(DelSole et al., 2014; Fasullo et al., 2018; Newman et al., 2016) through its atmospheric teleconnections (Ault 
et al., 2018; Newman et al., 2016), including modulating long-term drought risks in the Southwest United States 
(Stevenson et al., 2018). In California, for example, positive ENSO phases increase wintertime pluvial risk, while 
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Plain Language Summary A 22-year-long drought (megadrought) has lowered Lake Mead's 
water level to its lowest level, threatening the water supply to the millions of people in the US Southwest. 
Land surface integrates year-to-year precipitation variability with storage in soil and vegetation-atmosphere 
interaction processes, giving rise to long-term regional hydroclimate variability as seen in Lake Mead's 
water-level record. However, projections of regional hydroclimate variability are highly uncertain due to the 
model's biases, internal variability, and structural uncertainty among climate models. Therefore, we use a very 
large number of simulations and synthetic data from two different climate models to assess the hydroclimate 
variability robustly. We find that year-to-year variation in precipitation increases with global warming. 
However, the corresponding soil moisture variability changes are small or even decreased. This occurs because 
of a decreased year-to-year persistence in land surface conditions (memory) due to global warming. An 
important implication is that the regional mean state (soil moisture) changes are the primary drivers of future 
drought and pluvial risks. Therefore, the water resources planning may include mean-state-driven hydroclimatic 
changes despite uncertainty in the variability projections.
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drought risk increases with ENSO's negative phases (Kam & Sheffield, 2016). Inter-annual memory in the deep 
soil layer and groundwater could also enhance long-term drought and pluvial events and predictability (Kumar 
et al., 2019; Schubert et al., 2008; Sutton et al., 2021). A recent study suggested that internal climate variability 
alone could cause persistent drought lasting up to several decades, also known as megadrought (Ault et al., 2018).

Anthropogenic climate change can increase the risk of drought and pluvial extremes. For example, in California, 
where the global warming effect could be compounded by below-normal precipitation, megadrought risk has 
been projected to increase (Diffenbaugh et  al.,  2015). In addition, ENSO and its teleconnected precipitation 
anomalies may strengthen in future warming scenarios (Yun et al., 2021), further impacting land hydroclimate 
variability (Fasullo et al., 2018). However, the effects of climate change on ENSO variability are model-dependent 
(Stevenson et al., 2021), and signals are often small enough that large-ensemble climate simulations are required 
to assess ENSO changes robustly (Maher et al., 2018; J. Singh et al., 2022). Therefore, we employ two large 
ensemble climate data sets (CESM-LE and GFDL-CM3-LE) to bring out the robust features of the projected 
change and develop a conceptual framework (next paragraph) to understand its drivers and associated risks. 
Additionally, we evaluate the extent to which changes in drought and pluvial risks in the future climate depend 
upon changes in the mean state or the variability.

Some critical aspects of climate variability can be represented by a slow dynamical system (e.g., an ocean or 
land surface layer) forced by relatively fast weather noise, yielding a low-frequency or “reddened” climate signal 
(Frankignoul & Hasselmann, 1977). This view has been expanded to include more coherent forcing sources, for 
example, ENSO. For example, a comparison to a “Reddened ENSO” null hypothesis is useful for decadal varia-
bility of North Pacific sea surface temperature (SST; Newman et al., 2016) and North American drought indices 
(Ault et al., 2018). Therefore, we employ a Reddened ENSO framework to evaluate how projected changes in 
both ENSO and land surface memory can impact hydroclimate variability and predictability in North America.

We represent land hydroclimate using the root zone (surface to 1 m deep) soil moisture anomalies, whose dynam-
ics integrate the effects of land and climate processes (Cook et al., 2020; A. Singh et al., 2020). Other metrics, 
such as PDSI (Sheffield et al., 2012), are significantly correlated with soil moisture variability (Figure S1 in 
Supporting Information S1). Most plant roots, including 96% of crop roots, 94% of evergreen needle leaf trees' 
roots, and 93% of deciduous broadleaf trees' roots, are found in the top 1m soil layer (Amenu et al., 2005; Kumar 
et al., 2019; Zeng, 2001).

2. Data and Methods
We used two large ensemble climate simulations to assess projected changes in North America's hydroclimate 
variability and predictability. Next, we developed the Reddened ENSO framework to diagnose the drivers of 
the projected change. We evaluate the Reddened ENSO framework using observations from ERA5-Land soil 
moisture (Muñoz-Sabater et al., 2021) and Berkeley Earth SST data (Rohde & Hausfather, 2020). Finally, we use 
the Reddened ENSO framework to generate a very large ensemble of synthetic soil moisture data and assess the 
robust changes in the hydroclimate extremes.

2.1. Large Ensemble Climate Data (CESM-LE and GFDL-CM3-LE)

We investigate how hydroclimate variability changes within two large ensemble experiments: the 40-member 
Community Earth System Model Large Ensemble (CESM-LE) (Kay et  al.,  2015) and a 20-member ensem-
ble experiment with the Geophysical Fluid Dynamics Laboratory's Coupled Model version 3, generated at the 
NOAA Physical Science Laboratory (GFDL-CM3-LE) (Milly et al., 2014; Sun et al., 2018). Both large ensemble 
experiments covered the years 1920–2100, where each ensemble member was subjected to the same radiative 
forcing scenario (historical up to 2005 and Representative Concentration Pathway 8.5 thereafter) but began from 
slightly different initial atmospheric states. The analyses were carried out on five consecutive, non-overlapping 
30-year periods, from 1940 to 1969, 1970–1999, 2000–2029, 2030–2059, and 2060–2089, with 1970–1999 as the 
reference climate period. For brevity's sake, we show the spatial pattern for the reference climate period and the 
changes in projection periods: 2030–2059 and 2060–2089 periods (e.g., Figure 1). Scatter plots show changes in 
all five climate periods and ensemble members (e.g., Figure 2).

We focus mainly on two variables, monthly tropical SST (between 30°S and 30°N) and monthly top 1-m soil 
moisture across North America, but we also use precipitation to bring out novel aspects of our results. We first 
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applied a 12-month running mean filter to the monthly time series for each variable so that our analysis focuses on 
annual and longer time scales. Next, we computed the ensemble mean by averaging the time series across ensem-
ble members and applying a 21-year filter separately across all January, February, and so on, thus preserving both 

Figure 1. Hydroclimate variability projections in two large ensemble data sets. The figure compares precipitation variability 
changes with the corresponding change in soil moisture variability. Notice a smaller increase or decrease in soil moisture 
variability compared to corresponding precipitation changes. The left column shows inter-annual variability in the historical 
climate and the respective climate model, and the middle and right columns show the projected change in % unit. For the 
left column, the precipitation unit is mm/month, and the soil moisture unit is mm of water per 1 m soil depth. Ensemble 
mean values shown are from 40 ensemble members in CESM-LE and 20 in GFDL-CM3-LE projections. Stippling denotes 
statistically significant differences at a 95% confidence level using the F-test.

Figure 2. Changes in mean and variance of Niño 3.4 sea surface temperature (SST). Scatterplots show 30-year shifts in 
mean and standard deviation Niño 3.4 SST relative to the 1970–1999 period. Thin-colored lines denote the shift of individual 
ensemble members between two 30-year periods, while the thick-colored line represents the ensemble mean. Values for 
μ and σ (at the top right corner of each scatterplot) denote the ensemble mean's 1970–1999 mean and standard deviation, 
respectively. Notice the projected increase in El Niño-Southern Oscillation variability in both climate models.
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the annual cycle and the 180-year modeled trend within the ensemble mean. Then we computed anomalies  by 
subtracting this ensemble mean from the monthly values. Finally, we independently computed the empirical 
orthogonal functions (EOFs) of monthly tropical SSTs for every 30 years and used the principal component of 
the leading mode (i.e., ENSO) as the ENSO index in our analysis.

2.2. Reddened-ENSO Framework

To investigate the effects of climate change on hydroclimate variability and predictability within the two large 
ensembles, we developed a simple multivariate regression model of the yearly (12-month mean) soil moisture 
anomalies 𝐴𝐴 𝐴𝐴(𝑡𝑡) using two predictors—concurrent ENSO [𝐴𝐴 𝐴𝐴(𝑡𝑡)] , and previous year's soil moisture anomalies 𝐴𝐴 [𝑆𝑆(𝑡𝑡−12) ], 
referred to as the “Memory” as follows:

𝑆𝑆(𝑡𝑡) = 𝛼𝛼 𝑆𝑆(𝑡𝑡−12) + 𝛽𝛽 𝛽𝛽(𝑡𝑡) + 𝜀𝜀 (1)

Here, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are regression coefficients representing the Memory and ENSO effects, 𝐴𝐴 𝐴𝐴 is the noise term deter-
mined as a residual using respective climate model data (discussed later). 𝐴𝐴 𝐴𝐴(𝑡𝑡−12) represents the previous year's 
soil moisture anomalies. We refer to Equation 1 as the “Reddened ENSO framework.” Newman et al.  (2003) 
introduced this framework to diagnose how ENSO drives year-to-year variability in the North Pacific, where the 
memory term, in that case, represented oceanic mixed layer processes.

Time averaging (coarse-graining) can allow more complex climate dynamical systems to be represented 
by simple noise-forced linear systems (Equation  1), as demonstrated in many previous studies starting with 
Hasselmann (1976) (Ault et al., 2018; Hasselmann, 1976; Newman et al., 2003; Penland & Sardeshmukh, 1995). 
In Equation  1, the evolution of the current year's soil moisture variability 𝐴𝐴 𝐴𝐴(𝑡𝑡) depends on the previous year 
soil moisture anomalies 𝐴𝐴 𝐴𝐴(𝑡𝑡−12) ; that is, without ENSO forcing it is represented by a first-order Markov process 
(Amenu et al., 2005; Chikamoto et al., 2015; Delworth & Manabe, 1988; Schlosser & Milly, 2002). We also 
assume that ENSO can be “perfectly” known for the given year, which is not entirely accurate for real-world 
ENSO predictions (Ding et al., 2018; Ham et al., 2019). Additionally, for this simple model, we assume that: (a) 
the interactions between 𝐴𝐴 𝐴𝐴(𝑡𝑡−12) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) are negligible (Figure S2 in Supporting Information S1); and (b) the errors 
are normally distributed and not serially correlated (Figures S3 and S4 in Supporting Information S1).

We test the ability of the Reddened ENSO framework (Equation 1) to capture soil moisture variability and predict-
ability in each of the large ensembles. To derive the error and the coefficients 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , we first standardized the 
soil moisture and ENSO variables by their respective standard deviations, computed across all ensemble members 
and all five 30-year periods. Next, we computed separate regression models for each period. Finally, we employed a 
cross-validation technique that takes advantage of the multiple ensemble members to produce more robust regression 
coefficient estimates and more realistic errors. We computed the regressions (Equation 1) 40 times for CESM-LE (20 
times for GFDL-CM3-LE), each iteration using 39 (19) ensemble members to compute the coefficients and the remain-
ing member to predict the soil moisture anomaly, as well as the error and goodness-of-fit metrics.

2.3. Potential Predictability Metric

The signal-to-total noise ratio (S/T) is computed as follows. From Equation 1, the predicted soil moisture signal 
𝐴𝐴 𝑆𝑆(𝑡𝑡) and the noise term 𝐴𝐴 𝐴𝐴 are as below:

�̂(�) = � �(�−12) + � �(�) (2)

� = �(�) − �̂(�) (3)

where 𝐴𝐴 𝐴𝐴(𝑡𝑡) is the soil moisture anomaly in the climate model (observed), 𝐴𝐴 𝐴𝐴(𝑡𝑡) is the ENSO amplitude in the climate 
model, and 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the regression coefficients computed using the cross-validation technique described 
previously. Hence, the S/T is given by:
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We determined the statistical significance of the signal variance by comparing it with the noise variance using 
the F-test described by Guo et al. (2011). The actual skill is the anomaly correlation between �̂(�) and 𝐴𝐴 𝐴𝐴(𝑡𝑡) . The 
actual skill and the potential predictability are very similar in this study (Figure S5 in Supporting Information S1) 
because of the perfect model design, that is, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are computed from the large ensemble climate data and 
validated using the withheld ensemble.

2.4. Soil Moisture Memory and Effects of Global Warming

We computed soil moisture memory as its e-folding decay time scale (𝐴𝐴 𝐴𝐴  , Equation  5), representing the land 
surface reddening effect of the white noise precipitation forcing. The soil moisture memory drives a red spectrum 
in soil moisture variability (Chikamoto et al., 2015; Kumar et al., 2019).

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −(1∕𝜏𝜏)𝑑𝑑 + 𝜀𝜀 (5)

Equation 5 is the first-order Markov process model for the root zone soil moisture (s) variability; 𝐴𝐴 𝐴𝐴  is the soil 
moisture memory time scale computed using the best-fit exponential decay function from 1 to 24 months lead 
time as described in Kumar et al. (2019), and 𝐴𝐴 𝐴𝐴 is the white noise.

To understand how global warming affects 𝐴𝐴 𝐴𝐴  , Equation 5 can be compared with the classic water balance equation 
[𝐴𝐴 ∆𝑆𝑆 = −𝐸𝐸𝐸𝐸 + (𝑃𝑃 −𝑅𝑅) ] where ET is evapotranspiration, P is precipitation, and R is runoff. Additionally, ET can 
be written as a function of soil moisture, and potential evapotranspiration (PET) [ET = f(s)*PET] and 𝐴𝐴 (𝑃𝑃 −𝑅𝑅) 

can be treated as white noise (𝐴𝐴 𝐴𝐴) . After doing some algebra, it can be shown that 𝐴𝐴 𝐴𝐴 ∝
1

𝑃𝑃𝑃𝑃𝑃𝑃
 , that is, soil moisture 

memory is inversely related to PET, for example, midlatitude regions have higher memory than tropical regions 
(Delworth & Manabe, 1988). As global warming increases PET (Dewes et al., 2017; Kumar et al., 2016), soil 
moisture memory can decrease.

3. Results
We analyzed the impacts of global warming on projections of soil moisture variability and compared them 
with the projected changes in precipitation and ENSO variability (Section 3.1). Next, we developed and vali-
dated the Reddened ENSO framework using long-term historical observations (Section 3.2). We employed the 
Reddened ENSO framework to understand changing hydroclimate variability and predictability and their drivers 
(Section 3.3). Finally, we assess the implications of the changing hydroclimate variability on long-term drought 
and pluvial risks and hydrologic design (Section 3.4).

3.1. A Smaller Projected Change in Soil Moisture Variability Relative to the Increased Precipitation and 
ENSO Variability

Projected change in soil moisture variability is relatively small, or even decreases, despite a significant increase 
in the precipitation variability (Figure 1). Both climate models, CESM-LE and GFDL-CM3-LE, show a robust 
increase in precipitation variability, which strengthens with the global warming signal, that is, precipitation varia-
bility is stronger in the 2060–2089 period compared to the 2030–2059 period. During the 2060–2089 period, North 
America's precipitation variability increased by 16.5 ± 6.5% and 18.5 ± 8.5% in CESM-LE and GFDL-CM3-LE, 
respectively. The corresponding changes in soil moisture variability are 3.7 ± 6.4% and −12.7 ± 8.1%, respec-
tively. These estimates are for the 2060 to 2089 period relative to the 1970–1990 period; X ± Y shows ensem-
ble mean (X) and inter-ensemble spread represented by two times standard error estimates calculated from 40 
(20) ensemble members of the CESM-LE (GFDL-CM3-LE). GFDL-CM3-LE projects a robust decrease in soil 
moisture variability for most high-latitude regions and parts of the central United States. CESM-LE also shows 
a decrease in soil moisture variability in the Canadian Plains and parts of the Southeast United States. In the 
Southwest United States, and during the 2060–2089 period, the CESM-LE showed a 50% smaller increase in soil 
moisture variability (8.9 ± 6.5%) than precipitation variability increase (17.6 ± 7.7%).

Increased precipitation variability is consistent with an increase in ENSO variability in CESM-LE and 
GFDL-CM3-LE, although note that in GFDL-CM3-LE, ENSO amplitude declined in the latter half of the 21st 
century. Figure 2 shows the projected change in Niño 3.4 SST mean and its variability using the line scatter 
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plot with changes from one period to the next indicated by line segments ranging from blue (early) to red (late). 
We constructed the Niño 3.4 index for individual ensemble members and the ensemble mean every 30 years by 
averaging the SST anomalies in the Niño 3.4 region. The maximum increase in the ensemble mean ENSO index 
variability is found during the 2030–2069 period, and they are 17.9 ± 4.5% for CESM-LE and 24.7 ± 6.1% 
for GFDL-CM3-LE. Then, it slightly decreases to 15.8  ±  4.7% in CESM-LE and considerably decreases to 
14.1 ± 6.1% in GFDL-CM3-LE during the 2060–2089 period.

Internal climate variability can cause considerable changes in ENSO variability, that is, individual ensemble 
member responses can be higher (or lower) than the ensemble mean responses discussed in the last paragraph. 
For example, individual ensemble members show ENSO variability increases up to 55.6% in CESM-LE and 
57.5% in GFDL-CM3-LE (see maximum scatter spread in Figure 2), 2–3 times larger than the corresponding 
ensemble-mean responses. Hence, the large ensemble mean allows us to assess mechanisms that might lead to 
robust hydroclimate variability changes due to global warming.

The large ensemble data sets of the CMIP6 (Coupled Model Intercomparison Project Phase 6) climate models 
also show increased ENSO variability under a global warming scenario (Maher et al., 2018; Rodgers et al., 2021). 
In addition, an increased ENSO-precipitation variability response is often present in climate models with an 
“El Niño-like” SST change in the tropical mean SST due to the nonlinear mean SST-rainfall relationship (Yun 
et al., 2021). However, there is some question as to whether climate models have correctly captured past trends in 
tropical mean SSTs (Power et al., 2021).

Precipitation variability can also change due to thermodynamics, that is, the Clausius Clapeyron relationship 
and circulation changes (Allan et al., 2020; Seager et al., 2010). However, this study aims to develop a predictive 
understanding of the changing hydroclimate. Hence, we investigate changes in ENSO and related hydroclimatic 
variability because ENSO has a long-lead predictability timescale (Gonzalez & Goddard, 2016).

3.1.1. Regional Changes in Soil Moisture Variability

Impacts of climate change on the soil moisture mean, and variance is geographically dependent. To explore this 
point, we constructed soil moisture indices for three regions: Southwest United States, Southeast United States, 
and Canadian Plains (see boxes in the maps of Figure 1). These regions represent diversity in the North American 
hydroclimate, for example, the humid subtropical climate in the Southeast versus dry climate in the Southwest 
and high-latitude climate in the Canadian Plains. The evolution of soil moisture means and variance for each 
region (relative to the “historical” 1970–1999 period) is shown using line scatter plots analogous to Figure 2 but 
for soil moisture indices (Figure 3).

For the Southwest United States, CESM-LE and GFDL-CM3-LE show qualitatively similar soil moisture 
drying trends (Figures 3a and 3b). However, the soil moisture drying is more substantial in GFDL-CM3-LE 
(−15.1 ± 0.9 mm) than in CESM-LE (−6.0 ± 1.0 mm) because of their diverging mean precipitation responses, 
where CESM-LE shows an increasing precipitation trend, and the opposite is found in GFDL-CM3-LE projec-
tions for the Southwest United States (Figure S6 in Supporting Information S1). This result illustrates different 
plausible climate outcomes due to structural uncertainty among models compared with the use of only one large 
ensemble in many previous studies (Diffenbaugh et al., 2015; Swain et al., 2018). In addition, uncertainties in the 
Southwest precipitation projections can be related to large-scale circulation changes, such as for the Pacific jet 
stream (Neelin et al., 2013) and ENSO-precipitation teleconnection patterns (Allen & Luptowitz, 2017).

The two climate models differ in the Southeast United States (Figures 3c and 3d), where the CESM-LE shows a 
soil moisture wetting trend (11.4 ± 0.7 mm) while the GFDL-CM3-LE shows a small soil moisture drying trend 
(−4.0 ± 0.6 mm). However, the corresponding soil moisture variability changes are insignificant: −3.3 ± 4.1% in 
CESM-LE and 1.8 ± 4.5% in GFDL-CM3-LE.

Both climate models project a significant decrease in soil moisture variability in the Canadian Plains: −9.2 ± 4.3% 
in CESM-LE and −21.6 ± 4.6% in GFDL-CM3-LE. However, the corresponding soil moisture mean change is 
minimal (Figures 3e and 3f), despite the projected increase in precipitation in the high-latitude regions (Figure 
S6 in Supporting Information S1). This result highlights the effect of global warming on soil moisture dynam-
ics. Overall, the projected change in soil moisture variability is considerably smaller or even the opposite sign 
compared to changes in precipitation variability (also see Cook et al., 2020; Ukkola et al., 2020), warranting 
further investigation into its drivers and potential implication on drought and pluvial risks.
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3.2. Development and Validation of the Reddened ENSO Framework

3.2.1. Observed Hydroclimate Variability in North America

The coarse-graining of the time series (12-month running mean) captures some key observed hydroclimate vari-
ability features at inter-annual and longer time scales. For example, the observed time series of ENSO and soil 
moisture variations both capture two major transitions: the 1976/1977 transition that led to a multidecadal wet 
period during the 1980s and 1990s, and the 1998/1999 transition leading to a dry period during the 2000s to 
present (Figures  4b and 4c). These transitions have been identified in the literature (Dai et  al.,  2015; Meehl 
et al., 2016). For example, the first principal component of the SST variability in the Indian and tropical Pacific 
oceans (Figure 4a), referred to as ENSO, shows a transition from a negative phase to a positive phase during 
1976/1977 and then again to a negative phase during 1998/1999. In addition, the tropical SST variability corre-
lates very well with the National Oceanic and Atmospheric Administration's Niño 3.4 index with a correla-
tion coefficient of 0.96. Correspondingly, ERA5-Land soil moisture variability shows multidecadal wet and dry 

Figure 3. Regional changes in soil moisture mean and variability. Same as Figure 2 for soil moisture in Southwest United 
States, Southeast United States, and Canadian Plains shown by boxes in Figure 1.
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periods in the Southwest United States (Figure 4c). The soil moisture time series is obtained by averaging it over 
the Southwest box, same as in Figure 1.

3.2.2. Hydroclimate Modeling

Hydroclimate modeling requires incorporating the memory component (Barnett & Pierce,  2008; 
Hurst, 1951). For example, consider the historical Lake Mead water level variability shown using the black 
curve in Figure 4c. Located in the center of the Southwest United States, Lake Mead's water level shows 
a much higher persistence than the observed ENSO and soil moisture variability in the Southwest United 
States. One-year lag autocorrelations are 0.17, 0.41, and 0.91 for the observed ENSO, soil moisture, and 
Lake Mead water level records. In comparison, a correlation value of 0.20 or more is statistically significant 
at the 95% level using a one-sided t test and a 72-year-long data record (1950–2021) if each year is inde-
pendent. Effects of the two major transitions and the recent megadrought are also evident in the Lake Mead 
water level data, which is significantly correlated with Southwest United States soil moisture variability 
(correlation coefficient: 0.47).

3.2.3. Long-Term Hydroclimate Prediction

A long-term hydroclimate prediction (1 year or longer) is rather challenging because much of the forecast skill 
drops beyond the seasonal time scale (Meehl et al., 2021). For example, Figure 5a shows year-1 soil moisture 
forecast skill in state-of-art Seasonal to Multi-Year Large Ensemble (SMYLE) forecast (Yeager et  al., 2022). 
We compare the drift-corrected SMYLE forecast anomalies (Kumar et al., 2014) with that in the ERA5-Land 
soil moisture data from 1970 to 2021. The SMYLE forecasts generally show statistically significant skill in the 
Western and Central United States. For the Southwest United States, one of the more predictable regions, the area 

Figure 4. Observed hydroclimate variability in North America from 1950 to 2021. (a) First empirical orthogonal function 
(EOF1) of sea surface temperature (SST) variability in the Indo-Pacific domain calculated from the Berkeley Earth 
surface temperature data. EOF1 explains 48.5% variance in the detrended SST data (b) Principal component 1 (PC1) time 
series, representing an El Niño-Southern Oscillation (ENSO) index. The vertical dashed lines show two major Pacific 
Basin regime shifts: 1976/1977 and 1998/1999. (c) Standardized soil moisture anomalies in the Southwest United States 
calculated from the ERA5-Land reanalysis data. Lake Mead water level data is shown using the overlain black line. Notice 
the recent megadrought that started in the early 2000s and continues. Vertical line in panel (c) is lagged by 1 year from the 
corresponding vertical line in panel (b) to reflect soil moisture memory effects.
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average anomaly correlation skill in the SMYLE forecast is 0.41, which is less than the common threshold for 
“useful” skill, that is, 0.50 (Pegion et al., 2019).

Interestingly, the Reddened ENSO framework reproduces much of the dynamical prediction skill, or even better 
(compare Figures 5a and 5b). We performed 12-fold cross-validation, where for each fold, we developed the 
model coefficients (Equation 1) using 92% of the data, validated it by making 1-year “forecasts” upon the with-
held 8% data, and repeated the process 12 times to sample all the data. Since ERA5-Land soil moisture data are 
available for 72 years (1950–2021), we selected 6 years as the withheld data period for each iteration, giving 12 
interactions. The methodology maximizes the sample size for estimating α and β coefficients (Equation 1) using 
observations with only one ensemble, unlike the large ensemble climate model data. For the Southwest United 
States, the area-averaged anomaly correlations between predicted and observed soil moisture anomalies are 0.45 
in the Reddened ENSO model, comparable to or even better than the dynamical prediction skill. The lower skill 
in the SMYLE forecast might be due to a shallower soil layer (10 cm only available) and/or model biases and 
feedback (Esit et al., 2021). Overall, the Reddened ENSO framework provides a skillful soil moisture prediction 
in most of the conterminous United States except for the Northeast and the high-latitude regions consistent with 
the dynamical prediction system, that is, SMYLE.

Additionally, we can individually diagnose the ENSO and Memory components' contribution using the Reddened 
ENSO framework. We recalibrated the model (Equation 1) using Memory only (𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝑎𝑎𝐴𝐴(𝑡𝑡−12) + 𝜀𝜀𝑎𝑎) , and ENSO-
only (𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝑏𝑏𝑏𝑏𝑡𝑡 + 𝜀𝜀𝑏𝑏) predictors, referred to as the components-only model, in further discussion. The ENSO and 
Memory-only component model's skills are shown in Figures 5c and 5d, respectively. Memory contributions are 
greater than the ENSO, emphasizing the memory's importance in North American hydroclimate modeling and 
prediction. Also, their contributions are spatially separated, generally. For example, Memory contributes most in 
the Southwest United States (anomaly correlation = 0.38), while ENSO contributes most in the Southeast United 
States (anomaly correlation = 0.30) (Figures 5c and 5d). This latter result is consistent with the ENSO-related 
precipitation signal during the cold season, which is the strongest in the Southeast United States and the central 
United States, extending from the Arizona-New Mexico border into Nebraska (Newman et al., 2016). Memory 
also contributes to the skill in the high-latitude regions, where ENSO's contribution is minimal. Overall, the 
Reddened ENSO framework is a valuable diagnostic tool for understanding long-term hydroclimate variability 
and predictability. Next, we use the Reddened ENSO framework to understand the drivers of changing hydrocli-
mate variability and predictability.

Figure 5. Evaluation of the Reddened El Niño-Southern Oscillation (ENSO) framework using observations and its 
comparison with the dynamical prediction system (SMYLE). (a) Year 1 (lead 1-to-12-month average) soil moisture forecast 
skill (anomaly correlation) in the dynamical prediction system. (b) Anomaly correlation between predicted soil moisture 
anomalies using Reddened ENSO model (Equation 1), and ERA5 soil moisture observations from 1950 to 2021, the same 
for (c) ENSO-only model, and (d) Memory only model. Stipplings denote a statistically significant correlation at a 95% 
confidence level. In panel (c), the red circle represents Lake Mead's location. Note: SMYLE data are available for 10-cm soil 
moisture, and from 1970 to 2019. We used 1 May and 1 November initialization date in SMYLE runs.
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3.3. Hydroclimate Variability and Predictability Under Global Warming

The Reddened ENSO framework shows strengthening and weakening of the hydroclimate predictability related 
to ENSO and memory components, respectively (Figures 6–8). As expected, the Reddened ENSO framework is 
more skillful in the perfect model setting (Figure 6) than in observations (Figure 5b). For example, the predictive 
skill in the 1970–1999 climate and CESM-LE data are 0.60, 0.45, and 0.39 for the Southwest United States, 
Southeast, and Canadian Plains.

The Reddened ENSO framework using GFDL-CM3-LE generally shows a higher skill in the high-latitude regions 
than the CESM-LE in the historical climate (Figures 6a and 6c). However, global warming causes a reduction in 
potential predictability in high latitudes, particularly in the GFDL-CM3-LE projections (compare Figure 6c with 
Figure 6d). For example, the potential skill in the Canadian plains and GFDL-CM3-LE model decreases from 
0.40 in the 1970–1999 climate to 0.31 in the 2060–2089 climate. The corresponding potential skill in CESM-LE 
is 0.39 and 0.35, respectively.

Memory reduction primarily contributes to the reduction in potential skills. We find a widespread reduction in memory 
coefficient term (𝐴𝐴 𝐴𝐴 ) in the high-latitude regions, particularly in GFDL-CM3-LE projections (Figures 7e and 7f). The 
CESM-LE projections show a reduction in the memory coefficient term, too. For example, in the Canadian plains, 𝐴𝐴 𝐴𝐴 
decreases from 0.40 to 0.31 in GFDL-CM3-LE projections and 0.38 to 0.32 in the CESM-LE projections.

The CESM-LE projections show a slight strengthening of the potential skill (1-year forecast skill) in the South-
west and Southeast United States under the global warming scenario (Figure 6). For example, the potential skill 
in the Southwest United States increases from 0.60 in the 1970–1999 climate to 0.66 in the 2060–2089 climate; 
and similarly for Southeast United States from 0.45 to 0.52 (Figures 6a and 6b). However, the potential skill 
remains similar or decreases slightly in the GFDL-CM3-LE projections (Figures 6c and 6d). For example, the 
GFDL-CM3-LE projections show a decrease in potential skill from 0.41 to 0.34 in the Southeast United States. 
The GFDL-CM3-LE shows a generally smaller potential skill than CESM-LE in the Southwest United States.

Impacts of ENSO (𝐴𝐴 𝐴𝐴 coefficient in Equation 1) on hydroclimate predictability strengthen with global warming, 
particularly in the CESM-LE projections. For example, the 𝐴𝐴 𝐴𝐴 coefficient increases from 0.47 to 0.59 in the 
Southwest United States and 0.37 to 0.41 in the Southeast United States in the CESM-LE projections (Figures 7c 
and 7d). A slight increase from 0.30 to 0.33 is also found in the GFDL-CM3-LE projections for the Southwest 
United States (Figures 7g and 7h). However, GFDL-CM3-LE projections show the same 𝐴𝐴 𝐴𝐴 coefficient values 
(0.49) in the 1970–1999 and 2060–2089 climate in the Southeast United States. Both models show a minimal 
impact of ENSO on the Canadian Plains' soil moisture variability.

Figure 6. Effects of climate change on hydroclimate predictability using Reddened El Niño-Southern Oscillation framework. 
The figure compares the potential predictability of soil moisture between 1970–1999 and 2060–2089 climate and two large 
ensemble data. The signal to total variance metric represents the potential skill. Notice the strengthening of the predictability 
in the Southwest United States and CESM-LE projections and the weakening of predictability in the high latitude regions, 
particularly in GFDL-CM3-LE projections.
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3.3.1. Multidecadal Modulations in Hydroclimate Predictability

Does hydroclimate predictability change from one 30-year climate period to another? We assessed the hydro-
climate predictability in the five 30-year climate periods using the Reddened ENSO framework (Figure  8). 
Additionally, we diagnosed changes in the ENSO and Memory contributions to the hydroclimate predictability 
using the individual component-only model as discussed earlier (Figures 5c and 5d).

In the CESM-LE projections, the predictive skill of the ENSO model increased from 0.55 ± 0.03 in the 1940–
1969 climate to 0.65 ± 0.05 in the 2060–2089 climate for the Southwest United States, and the corresponding 
improvement in the Southeast United States is 0.40 ± 0.03 to 0.60 ± 0.05 (cyan bars in Figures 8a and 8c). On the 
other hand, the Memory model shows a slight decline in predictive skill, from 0.36 ± 0.01 to 0.31 ± 0.01 in the 
Southwest United States and 0.25 ± 0.01 to 0.24 ± 0.01 in the Southeast United States (green bars in Figures 8a 
and 8c). However, the Reddened ENSO model shows improvement in the predictive skill from 0.66 ± 0.03 to 
0.75  ±  0.05 in the Southwest United States and 0.53  ±  0.03 to 0.67  ±  0.05 in the Southeast United States 
(blue bars in Figures 8a and 8c). Hence, we attribute the improvement in the hydroclimate predictability to the 
increased ENSO effects.

The GFDL-CM3-LE model does not show a monotonic increase in ENSO-driven hydroclimate predictabil-
ity, which can be related to the decadal modulation in ENSO variability changes (Figure  2b). For example, 
GFDL-CM3-LE showed the highest ENSO predictive skill (0.70 ± 0.03) in the Southeast United States during the 
2000–2029 climate period, and the ENSO predictive skill declined to 0.61 ± 0.01 in the 2060–2089 period (cyan 
bars in Figure 8d); the ENSO variability also declined during the same period (Figure 2b). The GFDL-CM3-LE 

Figure 7. Drivers of changing hydroclimate variability and predictability. The figure shows α and β coefficients of the 
Reddened El Niño-Southern Oscillation (ENSO) framework model (Equation 1), where α represents the memory effect, and β 
represents the ENSO effect. Notice the weakening of α and strengthening of β, generally with global warming.
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projections show statistically insignificant contributions of the Memory model in the Southeast United States and 
Southeast (green bars in Figures 8b and 8d).

Due to a decreasing soil moisture memory effect, hydroclimate predictability can decline in high-latitude regions. 
For example, in the Canadian Plains, the CESM-LE projections show a decline in Memory model predictive skill 
from 0.54 ± 0.03 in the 1940–1969 climate to 0.44 ± 0.02 in the 2060–2089 climate (green bars in Figure 8e). 
The corresponding decline in the GFDL-CM3-LE projection is from 0.43 ± 0.01 to 0.35 ± 0.01 (green bars in 
Figure 8f). ENSO does not contribute significantly to the Canadian Plains' predictive skill in both climate models. 
Hence, total predictive skill (Reddened ENSO model) declined in the Canadian Plains (blue bars in Figures 8e 
and 8f).

3.3.2. Global Warming Reduces Soil Moisture Memory, Which Is Also Affected by Internal Climate 
Variability

The reduction in the memory contribution is generally consistent with the corresponding reduction in soil mois-
ture memory time scale. However, inter-ensemble uncertainty is very large, leading to statistically insignificant 
changes in most mid-latitude regions of North America (Figure 9). In the 2060–2089 climate, the soil moisture 
memory decreases by −9.9 ± 12.8%, −6.0 ± 14.2%, and −8.5 ± 14.3% in CESM-LE projections for the Southwest 
United States, and Southeast, and Canadian Plains, respectively. The corresponding reduction in GFDL-CM3-LE 
projections are: −3.8 ± 20.5%, −1.1 ± 17.3%, and −11.9 ± 22.4%. The GFDL-CM3-LE projections also show 
spatially adjacent positive and negative changes, for example, the northern part of the Southwest and the West-
ern part of the Canadian Plains. Although, regions of increasing soil moisture memory are mostly statistically 

Figure 8. Multi-decadal modulation and changes in hydroclimate predictability. The bar plots show the evolution of 
signal-to-total ratios for the Memory + El Niño-Southern Oscillation (ENSO) model (Reddened ENSO) and compare them 
with the Memory only and ENSO only model in each of the three regions indicated by boxes on the maps in the previous 
figure. Error bars were determined by bootstrapping the signal-to-noise computation with 1,000 iterations with replacement. 
The dashed horizontal line shows the statistical significance at a 95% confidence level. Due to its smaller sample size (20), 
the GFDL-CM3-LE has a higher significance level than the CESM-LE (40).
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insignificant (Figures 9e and 9f) and could represent greater uncertainty in GFDL-CM3-LE memory projections 
due to the smaller ensemble size (=20 in GFDL-CM3-LE).

Increasing PET is a robust response to global warming in both large ensembles (Figure 10). For example, in Cana-
dian Plains and CESM-LE projections, PET increases by 25.7 ± 0.4%, and soil moisture memory decreases by 
−10.5 ± 4.1%; the corresponding changes in the GFDL-CM3-LE projections are 25.7 ± 0.4%, and −13.0 ± 4.4% 
respectively. Spatially averaged indices show a smaller inter-ensemble uncertainty than the local grid point 
average results discussed in the last paragraph. In the Southwest United States, the GFDL-CM3-LE projects 
a stronger PET increase (23.4  ±  0.3%) than CESM-LE (15.2  ±  0.2%). Note that GFDL-CM3-LE projects a 
much drier Southwest United States because of the projected precipitation decrease (Figure S6 in Supporting 
Information S1). GFDL-CM3-LE projections also show a multidecadal modulation in the soil moisture memory 
where the model shows a smaller change in the 2060–2089 period (−6.5 ± 8.5%) than in the 2000–2029 period 
(−12.8 ± 6.1%). The multidecadal modulation in soil moisture memory is generally the opposite sign of ENSO 
variability (Figure 2), that is, if ENSO variability decreases, then soil moisture memory increases and vice-versa. 
A similar multidecadal modulation in soil moisture memory changes is also found in the Southeast United States, 
where ENSO influence is stronger. Therefore, the soil moisture memory metric represents a coupled climate 
system response rather than land-only characteristics.

In summary, hydroclimate variability and predictability can change under the influence of ENSO and soil mois-
ture memory effects. The ENSO effects become stronger, at least in CESM-LE projections, whereas soil moisture 
memory's effect becomes weaker under the global warming scenario. Next, we investigate their implications on 
hydroclimate climate extremes, including drought and pluvial risk.

3.4. Implications on Hydroclimate Extremes and Hydrologic Design

3.4.1. Power Spectra of Soil Moisture Variability

A decreasing soil moisture memory (Figure 9) can lessen the redness in the soil moisture variability spectra, 
which is further impacted by increasing ENSO variability (Figure 2); therefore, significant consequences for 
long-term droughts and pluvial conditions, for example, megadrought events. To explore this issue robustly, we 
used the Reddened ENSO framework to generate 1,000 synthetic soil moisture anomalies for every 30 years 
and the climate model ensemble (Section T1: Data Processing in Supporting Information S1). We compared the 
synthetic soil moisture power spectra with the corresponding climate models' power spectra with a limited sample 
size: 40 for CESM-LE and 20 for GFDL-CM3-LE. Finally, we bootstrapped the climate model's ensemble 1,000 
times for comparison purposes and showed its median value in Figure 11.

Additionally, we compared the power spectra of the observed soil moisture variability (black line in Figure 11) 
with the large ensemble climate data for the historical period (blue line in Figure 11). We used ERA5-Land soil 
moisture data and observed SST data from 1950 to 2021 (c.f., Figure 4).

Figure 9. Soil moisture memory time scale projections in two large ensemble data. The left column shows the ensemble 
mean soil moisture memory (in months) in the 1970–1999 climate. The middle and right columns show the projected change 
in soil moisture memory in % compared to the 1970–1999 climate and for 2030–2059 and 2060–2089 projections. Notice a 
decrease in soil moisture memory in the future climate. Stipplings show statistical significance using the t test.
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We selected 100 random initial years between 1950 and 1992 and subsequent 30-year segments of soil moisture 
and ENSO. Next, we developed the synthetic power spectra using the Reddened ENSO framework (Equation 1), 
observation-based estimates of α, β, and ε as discussed previously (c.f., Figure 5), and 30-year ENSO segments 
for the given observation ensemble. Using data only for the 1970–1999 period results in very large uncertainty 

Figure 10. Increasing atmospheric water demand, decreasing soil moisture memory, and modulation related to El 
Niño-Southern Oscillation (ENSO) variability (see text). Same as Figure 2, the line scatters plot shows changes in potential 
evapotranspiration, soil moisture memory for individual ensembles (thin line), ensemble mean (thick line), and five climate 
periods relative to the 1970–1999 climate. Notice the decadal modulation in the soil moisture memory, especially in 
GFDL-CM3-LE projections for the Southwest and Southeast United States and compare it with the decadal modulation in 
ENSO changes (Figure 2).
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in the observation-based power spectra due to its limited sample size (Figures S7 and S8 in Supporting Infor-
mation S1). Further, it is assumed that changes in soil moisture and ENSO variability are relatively small during 
the historical period from 1950 to 2021 (cf. Figures 4b and 4c); hence using the entire observation period and 
sub-sample the 30-year continuous segments to create a large ensemble of the observation equivalent is justified.

Both climate models, CESM-LE and GFDL-CM3-LE, underestimate low-frequency soil moisture varia-
bility (1–3 cycles per 29  years) compared to observation in the Southwest and Southeast United States 
(Figures 11a–11d). For example, in the Southwest United States and the observation-based synthetic power 
spectra, the lowest frequency (frequency 1) explains 19.6% of the total variance (range: 13.4%–25.9%), 
compared to 13.6% in CESM-LE (range: 9.5%–18.7%), and 11.8% in GFDL-CM3-LE historical data (range: 

Figure 11. Power spectra of the soil moisture variability in observations and climate model projections. The figure shows 
the power spectra of the 1,000 samples of synthetic soil moisture anomalies. Their median and 95% uncertainty ranges are 
shown using solid lines and color shading. A dashed line with star markers shows the power spectra computed directly from 
the respective large ensemble data, mostly within the 95% uncertainty range of the synthetic data. The observation-based 
power spectra are developed using ERA5 soil moisture data, and Berkley Earth's SST data for El Niño-Southern Oscillation 
(ENSO) index from 1950 to 2021. Thirty-years continuous (cont.) segments of soil moisture and ENSO observations are 
randomly selected 100 times from the observations to make it comparable to climate models' historical power spectra. Notice 
(a) an underestimation of low-frequency variability in the climate models for Southwest United States, and Southeast, and 
(b) strengthening of the ENSO-related frequency's power (6–7 cycles per 29 years) in the CESM-LE future climate for the 
Southwest and Southeast United States.
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6.8%–18.0%). The underestimation of low-frequency hydroclimate variability is a known issue in climate 
models (Ault et al., 2013; Cheung et al., 2017; Kumar et al., 2013; Pierce et al., 2022). Additionally, the 
observation-based synthetic power spectra have uncertainty due to their limited sample size (72 years of 
data), as some of the resampled observations fall outside the 95% range of the synthetic power spectra, for 
example, frequencies 3 and 4 in the Southwest United States, and frequency 2 in the Southeast United States 
(see dashed line in Figure 11). The observation-based power spectra generally overlap with climate models' 
power spectra in the Canadian Plains.

The synthetic soil moisture power spectra generated using the large ensemble climate data capture the corre-
sponding climate models' power spectra within the 95% range uncertainty estimate of the synthetic model 
(Figure  11). In fact, synthetic power spectra show a smooth transition from one frequency to the subse-
quent frequency. In contrast, the climate model's ensemble can show a zig-zag pattern, for example, a lower 
frequency spectrum (1–3 cycles in 29  years) in the Southwest United States and CESM-LE projections. 
Hence, we argue that a very large sample size is needed to investigate power spectra, and the synthetic model 
approach is helpful.

The CESM-LE synthetic spectra show an increase in the power for ENSO-related frequency (6–7 cycles per 
29 years) in the 2060–2089 climate compared to the 1970–1999 climate and in the Southwest United States. For 
example, the power of the 6 cycles per 29 years frequency increased from 10.1% (range: 7.5%–13.6%) in the 
historical climate to 17.5% (range: 13.3%–22.8%) in the future. The Southeast United States projections show a 
minor increase in the power from 10% (range: 7.0%–13.6%) to 12.0% range (9.2%–15.8%) for the ENSO-related 
frequency. On the other hand, in the Canadian Plains, the spectral power decreased across all frequencies, espe-
cially in the GFDL-CM3-LE future projections, due to an overall decreased soil moisture variability (Figure 3f). 
However, the lower frequency power decreased more than the higher frequency. For example, the spectral power 
of frequency 1 decreased from 17.9% (range: 10.0%–28.6%) to 11.1% (range: 6.5 to 17.3), and frequency 6 
decreased from 6.5% (range: 4.0%–9.7%) to 4.7% (range: 2.9%–7.1%).

The GFDL-CM3-LE synthetic power spectra are relatively white, that is, low frequency has similar power as the 
high-frequency in the Southwest and Southeast United States (Figures 11b and 11d). This can be expected due 
to the minor role of memory in GFDL-CM3-LE projections (Figures 8b and 8d). Nonetheless, this comparison 
provides an important insight into how soil moisture memory contributes to the redness in the spectrum, and if 
soil moisture memory is absent, then the spectrum can look white, as demonstrated next.

The soil moisture memory effects contribute to the redness in hydroclimate (soil moisture) variability spec-
tra, demonstrated using counterfactual analysis, that is, removing the soil moisture memory effects in the 
Reddened ENSO framework. Figure  12 shows the soil moisture variability spectra using the ENSO-only 
model in the Southwest and Southeast United States, where the ENSO-only model shows statistically signifi-
cant prediction skill (Figure 5c, and cyan bars in Figures 8a–8d). To remind the reader, redness is the increase 
in spectral power with lower frequencies. The redness has disappeared in the ENSO-only model (Figure 12), 
highlighting the advantage of developing a simpler model (the Reddened ENSO framework) to understand 
the changing hydroclimate variability and predictability. In the Southwest United States, the ENSO effects are 
relatively stronger in CESM-LE than in GFDL-CM3-LE, which is comparable to the observations (Figures 12a 
and 12b).

3.4.2. Implications for Drought and Pluvial Risks

The hydroclimate extreme analysis is often less robust due to the small sample size, for example, one in a 
100-year event has only one sample in 100 years of simulation or observation. We use the Reddened ENSO 
framework (Equation 1) to augment the sample size to 1,000 for a robust assessment of the drought and pluvial 
risks (see Section T1: Data Processing in Supporting Information S1). Additionally, we separate the contri-
butions of mean and variances for each climate model's October–September mean soil moisture anomalies 
generated by the Reddened ENSO model. October–September is defined as the water year by the United States 
Geological Survey. First, the Reddened ENSO model (Equation 1) derived synthetic anomalies after remov-
ing the trend (detrended) represented by 𝐴𝐴 𝐴𝐴𝑡𝑡 in Equation 1, that is, taking out ensemble mean anomalies in the 
respective large ensemble data set, keeping the variance the same as in the projected climate, and isolating the 
variance's contribution only.
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We also derived synthetic anomalies with respect to the historical climatology (with trend), therefore providing 
the contribution of mean + variance changes in future hydroclimate extremes as follows:

𝑆𝑆
𝑤𝑤𝑤𝑤

(𝑤𝑤)
= ∆𝑠𝑠𝐺𝐺𝐺𝐺 + 𝛼𝛼 𝑆𝑆(𝑤𝑤−1) + 𝛽𝛽 𝛽𝛽(𝑤𝑤) + 𝜀𝜀 (6)

Where 𝐴𝐴 ∆𝑠𝑠𝐺𝐺𝐺𝐺  is the global warming signal computed as the large ensemble mean soil moisture anomalies relative 
to the 1970–1999 climate in the respective climate model.

Changes in the mean soil moisture due to global warming drive shifts in the drought and pluvial distribution 
(Figure 13). We define a drought (pluvial) event as occurring when soil moisture anomalies are below (above) 
zero, with event duration defined as the number of consecutive years of the same sign and event severity meas-
ured by the magnitude of anomalies summed over the entire event (see inset in Figure 13). The exceedance proba-
bilities of droughts and pluvial are determined as follows: (a) identify droughts and pluvial events in each 40 × 30 
(20 × 30) years segments of the CESM-LE (GFDL-CM3-LE) of the LE data or the corresponding synthetic soil 
moisture anomalies. (b) Rank the events as per their severity or duration and compute the probability distribution 
of the ranked events. In the 2060–2089 period, drought severity is rescaled to its standard deviation in the refer-
ence climate period, that is, 1970–1999. Exceedance probability is one minus cumulative probability. (c) Thus, 
1,000 synthetic samples of the droughts or pluvial distribution are obtained, and their 95% ranges and median 
values are shown in Figure 13. For comparison, we bootstrapped the LE data with replacement 1,000 times, and 
its median values are also shown in Figure 13.

Figure 13 shows the drought and pluvial risk comparison between historical and future climates using two large 
ensemble climate data and corresponding synthetic models. A comparison with observations in the historical 
climate is shown in the supplementary (Figure S9 in Supporting Information S1) because of two main reasons: 
(a) the synthetic model can be reliably estimated using the large ensemble climate data (cf., Figure 11), and (b) 
the main goal is to understand future changes which are only available from the large ensemble data. Both large 
ensembles generally produce drought and pluvial risk comparable to the observations (Figure S7 in Supporting 
Information S1). Biases are with ±50% for 20 out of 24 cumulative distribution curves (Figure S7 in Supporting 

Figure 12. Soil moisture power spectra using El Niño-Southern Oscillation (ENSO)-only model. Same as Figure 11 using 
ENSO-only model. Notice the disappearance of the redness in the power spectra (see text).
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Information S1). Both models underestimate pluvial durations in the Southeast (−62% for CESM-LE, and −84% 
in GFDL-CM3-LE) and drought severity in the Southwest (−43% in CESM-LE, and −26% in GFDL-CM3-LE), 
consistent with the corresponding power spectra analysis (Figure 11). Nonetheless, the observational analysis 
provides an uncertainty context (±50%) to assess robustness in future projections.

The synthetic soil moisture anomalies reliably produce the distribution of the droughts and pluvial events as 
found in the corresponding LE data, that is, they are found within the 95% range of the synthetic distribu-
tions as shown in color shading in Figure 13. For example, in the Southwest United States for the CESM-LE 
model, the value of the 5% exceedance probability drought severity increased from 3.1 accumulated stand-
ard deviations in the historical period (1970–1999) to 6.2 in the future period with the trend (2060–2089), 
while the corresponding values from the synthetic soil moisture anomalies were 3.3 (range: 2.8–4.0) and 5.5 
(range: 4.6–6.7), respectively. Additionally, the synthetic anomalies give the distribution a better smooth 
fit than the original bootstrapped data (compare the solid line with the corresponding color markers in 
Figure 13). Therefore, the Reddened ENSO framework can also be seen as a physically interpretable distri-
bution function where model parameters can be reliably estimated from the climate model outputs or obser-
vations. Hereafter, we discuss the synthetical anomalies results and refer to them as the robust projections 

Figure 13. Changing drought and pluvial risk—the role of mean and variability changes. Severity and duration of drought and pluvial events in synthetic soil moisture 
anomalies generated from Reddened El Niño-Southern Oscillation (ENSO) model (Equation 1, color shading) and respective large ensemble data star symbols. 
Empirical cumulative distribution functions for severity (left column) and duration (right column) of drought (flood) events, defined here as a consecutive 12-month 
running mean soil moisture anomalies below (above) 0. Duration is given in the number of years, and severity is obtained by accumulating the absolute value of the 
anomalies throughout the duration of the event. The blue curves are representative of 1970–1999, the red curves represent 2060–2089, and the orange curves represent 
future “detrended” time series. The number in each panel xx/yy represents the total shift in the detrended/and trend distributions compared to the historical climate. 
Notice that changes are significant only when mean change (with trend) is included in the distribution. Inset figure (a): D—drought, P—pluvial.
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from the CESM-LE and GFDL-CM3-LE because the synthetic model parameters were estimated from the 
respective climate models.

Future “detrended” hydroclimate extremes almost overlap with their historical distribution, as can be seen by 
comparing the yellow shading curve with the blue shading in Figure 13. In other words, if we recenter the future 
distribution by removing its new mean climate, then future drought and pluvial risk may look like the historical 
climate. Changes in the drought and pluvial risks are considerably more minor in the detrended future climate 
than with the trend. For example, in the Southwest United States and GFDL-CM3-LE projections, drought sever-
ity risk increases by 7% in the detrended future climate compared to a 1,008% increase in the future climate with 
the trend. Numbers represent a % increase in the area left to the median line relative to the historical climate 
(Figure 13).

The mean climate change (with trend) introduces considerable shifts in the drought and pluvial distributions 
for the Southeast and Southwest United States (Figure 13). A shift to the right means more severe and more 
prolonged droughts, and the opposite is for a left shift in the distribution. Both climate models project more 
severe and prolonged drought in the Southwest United States while the pluvial risk lessens. The projected 
drought risk is considerably higher in GFDL-CM3-LE projections than the CESM-LE projections for the 
Southwest United States. For example, GFDL-CM3-LE projects a 1,008% increased drought severity risk 
compared to 106% in the CESM-LE projections. An increase in drought duration is generally proportional 
to the drought severity increases, that is, if severity increases, then duration also increases. However, the 
magnitude of the drought duration increase is generally smaller than the drought severity. For example, 
the GFDL-CM3-LE projections show a 311% increase in drought duration in the Southwest United States 
(Figures 13s and 13t).

Climate model projections differ in the Southeast United States, where CESM-LE projects increased pluvial 
severity (426%) and decreased drought severity (−68%). Opposite results are found in the GFDL-CM3-LE 
projections, which show a slightly decreased pluvial severity (−39%) and an increased drought severity (60%).

In the Canadian Plains, both climate models show minimal changes in drought and pluvial risks consistent with 
minimal changes in mean soil moisture (Figures 3e and 3f). This result again emphasizes that the mean state 
changes mainly drive the future drought and pluvial risks despite uncertainty in the variability projections.

3.4.3. Implications for Hydrologic Design

A 5% exceedance probability event is critical in hydrologic design (Chow et  al.,  1988). Therefore, we have 
assessed projected change in the 5% exceedance probability event as found in the historical climate. Figure 13m 
illustrates the example: the 5% exceedance probability event in the CESM-LE historical climate has a drought 
severity of 3.1 accumulated standard deviations, and a similar magnitude event in the future climate with a trend 
has the exceedance probability of 22% (range: 17%–27%).

Figure 14 shows the projected change in the 5% exceedance probability events with and without trend and in 
reference to the historical climate. Consistent with the earlier discussion, the exceedance probability of the 
“detrended” future climate is not considerably different from the historical climate. However, it changes consid-
erably when the trend is included. Some notable changes are the GFDL-CM3-LE projects that a 5% exceedance 
probability drought severity event can become much more frequent in the Southwest United States with a median 
exceedance probability of 79% (range: 68%–90%). On the other hand, pluvial extremes can become less frequent 
and shorter in the Southwest United States. In fact, the GFDL-CM3-LE projection does not find any pluvial event 
that lasts for 5 years which is the pluvial duration of the 5% exceedance probability event in the historical climate 
(see Figure 13h).

The divergent response is found in the Southeast United States, where a 5% exceedance probability pluvial sever-
ity event becomes more frequent with a median frequency of 56% (range: 48%–64%) in CESM-LE projections 
and less frequent in GFDL-CM3-LE projections with a median frequency of 1% (range: 1%–3%). Similarly, a 
5% exceedance probability drought severity event becomes less frequent with a median frequency of 1% (range: 
0.8%–1.1%) in CESM-LE projections and more frequent in GFDL-CM3-LE projections with a median frequency 
of 19.3% (range: 12.7%–25.9%). We did not analyze the 5% exceedance probability event for the Canadian Plains 
because they show minimal changes (two rightmost columns in Figure 13).
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Figure 14.
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4. Discussion and Conclusions
A smaller change in land hydroclimate variability can be attributed to the decreasing soil moisture memory 
effects under global warming scenarios (e.g., Figures 9 and 10). Soil moisture variability is directly proportional 
to the memory effects, that is, a higher memory can contribute to more variability and vice versa (Equation 1). 
Hydroclimatic time series with long-term memory (persistence) show higher variability than less or no memory 
time series (Hamed, 2008; Koutsoyiannis, 2003). In addition, soil moisture memory (persistence) increases with 
soil depth (Mishra et al., 2015), so changes in soil moisture variability can be sensitive to soil depths. In paral-
lel research, Shi et al. (2022) found a reduction in the upper-layer ocean memory due to global warming in the 
CMIP6 climate model's projections.

Konapala et al. (2020) found a reduction in seasonal evapotranspiration variability despite increased precipitation 
variability due to global warming. Evapotranspiration is another metric for land hydroclimate variability. Hence, 
a reduction or smaller change in soil moisture variability is consistent with the findings reported by Konapala 
et al. (2020).

Contrastingly, increasing ENSO and precipitation variability (Figures 1 and 2) can increase soil moisture variabil-
ity (Equation 1). The ENSO variability projections are considerably uncertain in climate models (Beobide-Arsuaga 
et al., 2021). The two climate models selected in this study, CESM-LE and GFDL-CM3-LE, projected increased 
ENSO variability, which is generally consistent with other large ensemble climate data (Maher et  al.,  2018; 
Rodgers et al., 2021).

Effects of soil moisture memory on hydroclimate predictability are generally smaller in GFDL-CM3-LE than 
CESM-LE, especially in the mid-latitude regions (Figure  8). Kumar et  al.  (2019) found a similar soil mois-
ture memory between Community Land Model and Noah Land Surface Model; respective climate model's land 
component driven by the observed meteorological forcing. CESM-LE shows a stronger correlation between total 
water storage anomalies and hydroclimate variability in the subsequent growing season than satellite-based obser-
vations and GFDL climate models (Levine et al., 2016). ENSO teleconnection strength is stronger in CESM-LE 
data than GFDL-CM3-LE, especially in the Southwest United States (e.g., Figures 8a and 8b). Future studies 
can explore inter-model differences using the new generation of large ensemble climate data (e.g., Delworth 
et al., 2020; Rodgers et al., 2021).

For both models and observations, the Reddened ENSO framework provides a useful null hypothesis to evaluate 
changing land hydroclimate variability and predictability in North America. The Reddened ENSO framework 
shows comparable performance to the dynamical prediction system for predicting year-to-year soil moisture 
variations (e.g., Figure 5). Using the Reddened ENSO framework, we find that increasing ENSO-teleconnected 
precipitation variability and decreasing land memory could offset, resulting in little net change in land hydrocli-
mate variability. However, these changes would also lead to increased (decreased) land hydroclimate variability 
on annual (decadal) time scales (cf. Figure 11).

Despite uncertainty in the variability projections, the soil moisture mean state changes can drive future drought 
and pluvial risks at regional scales (e.g., Figures 13 and 14). The Reddened ENSO framework robustly demon-
strated mean-state-driven changes in hydroclimate extremes using two large ensemble climate data and increas-
ing their sample size to 1,000 (e.g., Figure 14), which is otherwise not feasible. The mean-state-driven changes 
can have important implications for long-term water planning. For example, Barnett and Pierce  (2008) used 
mean-state-driven inflow changes and projected that Lake Mead is likely to dry (50% probability) by 2021, which 
appears to be the case today.

Figure 14. Projected changes in the probability of exceedance of wet and dry extremes over the Southwest (top panel) and the Southeast (bottom panel) in 2060–2089 
relative to 1970–1999. Taking the 95th percentile event—which has a 5% probability of exceedance—from each model's (CESM-LE and GFDL-CM3-LE) historical 
(1970–1999) distributions of pluvials (top row in each panel) and droughts (bottom row in each panel), we quantify the projected changes in the probability of 
exceedance of events of equivalent severity (left column) and duration (right column). The stars denote probabilities given by each climate model's soil moisture 
anomalies, while bars denote the probabilities estimated with the synthetic soil moisture anomalies (the black horizontal line illustrating the median of said ranges). The 
blue stars/bars represent the historical 30-year period; the yellow stars/bars represent the future 30-year period where anomalies were computed relative to that period's 
climatology (in effect, removing the externally forced trend); the red stars/bars represent the same future 30-year period where anomalies were computed relative to the 
historical climatology (thereby including the trend).
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